Bias in the Estimation of the Mean Reversion Parameter in Continuous Time Models1
نویسندگان
چکیده
It is well known that for continuous time models with a linear drift standard estimation methods yield biased estimators for the mean reversion parameter both in nite discrete samples and in large in- ll samples. In this paper, we obtain two expressions to approximate the bias of the least squares/maximum likelihood estimator of the mean reversion parameter in the Ornstein-Uhlenbeck process with a known long run mean when discretely sampled data are available. The rst expression mimics the bias formula of Marriott and Pope (1954) for the discrete time model. Simulations show that this expression does not work satisfactorily when the speed of mean reversion is slow. Slow mean reversion corresponds to the near unit root situation and is empirically realistic for nancial time series. An improvement is made in the second expression where a nonlinear correction term is included into the bias formula. It is shown that the nonlinear term is important in the near unit root situation. Simulations indicate that the second expression captures the magnitude, the curvature and the non-monotonicity of the actual bias better than the rst expression. Keywords: Least squares, Maximum likelihood, Discrete sampling, Continuous record, Near unit root. JEL Classi cations: C22, C32
منابع مشابه
Bias in the estimation of the mean reversion parameter in continuous time models
It is well known that for continuous time models with a linear drift standard estimation methods yield biased estimators for the mean reversion parameter both in finite discrete samples and in large in-fill samples. In this paper, we obtain two expressions to approximate the bias of the least squares/maximum likelihood estimator of the mean reversion parameter in the Ornstein–Uhlenbeck process ...
متن کاملBias in Estimating Multivariate and Univariate Diffusions
Multivariate continuous time models are now widely used in economics and finance. Empirical applications typically rely on some process of discretization so that the system may be estimated with discrete data. This paper introduces a framework for discretizing linear multivariate continuous time systems that includes the commonly used Euler and trapezoidal approximations as special cases and le...
متن کاملBias in the Mean Reversion Estimator in Continuous-Time Gaussian and Lévy Processes
This paper develops the approximate finite-sample bias of the ordinary least squares or quasi maximum likelihood estimator of the mean reversion parameter in continuous-time Lévy processes. For the special case of Gaussian processes, our results reduce to those of Tang and Chen (2009) (when the long-run mean is unknown) and Yu (2012) (when the long-run mean is known). Simulations show that in g...
متن کاملEffect of Bias in Contrast Agent Concentration Measurement on Estimated Pharmacokinetic Parameters in Brain Dynamic Contrast-Enhanced Magnetic Resonance Imaging Studies
Introduction: Pharmacokinetic (PK) modeling of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is widely applied in tumor diagnosis and treatment evaluation. Precision analysis of the estimated PK parameters is essential when they are used as a measure for therapy evaluation or treatment planning. In this study, the accuracy of PK parameters in brain DCE...
متن کاملBias in Estimating Multivariate and Univariate Di¤usions
Multivariate continuous time models are now widely used in economics and nance. Empirical applications typically rely on some process of discretization so that the system may be estimated with discrete data. This paper introduces a framework for discretizing linear multivariate continuous time systems that includes the commonly used Euler and trapezoidal approximations as special cases and lea...
متن کامل